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INTRODUCTION 

Any deformation of a solid R i n  3-space which i s  not  a 

r i g i d  motion i s  accompanied by I 1  s t r a i n s " ,  that  i s  by changes 

i n  line-elements. 

pos i t i ons  X,Y, a dis tance ZT apar t ,  i n  i t s  o r i g i n a l  pos i t ion ,  

and l e t  x,y be the  pos i t i ons  of t he  same p a r t i c l e s  i n  the  

Let two p a r t i c l e s  of the  s o l i d  have the  

deformed s t a t e ,  a dis tance xy a p a r t .  The non-r ig id i ty  of t he  

deformation i s  then measured by the  amount t h e  quot ient  

d i f f e r s  from 1 f o r  any X,Y i n  R. The s t a t e  of s t ra in  of t he  

s o l i d  due to the  deformation is  measured by the  deviat ion from 1 

of the  same quotient ,  only formed for I t  neighboring" po in t s  XJY. 

More p rec i se ly  we def ine 

- - 
M = sup l i m  Q(X,Y)  , m = i n f  l i m  Q(X,Y) ; 

X E  R Y->X X E  R Y->X 

then the  amcimts by which M and m d i f f e r  from 1 give us  a measure 

f o r  the  maximum s t ra in  accompanying t h e  deformation. 

The present  paper i s  concerned w i t h  t he  range of values 

Q(X,Y) can assume f o r  a r b i t r a r y  deformations of a so l id  occupying 

a region R i n  the  undeformed s t a t e ,  i f  the  values m,M which 

l i m i t  t he  s t r a i n s ,  are prescribed. We r e s t r i c t  ourselves here 

to deformations that  l o c a l l y  are homeomorphisms. 

mappings of R f o r  which the  q u m t i t i e s  M and m have f i n i t e  

We c a l l  
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f l  p o s i t i v e  values quasi-isometric", and more p rec i se ly  

(m,M) -isometric 1 I n  one-dimensional space the quasi-conformal 

mappings of an i n t e r v a l  a r e  the Lipschitz-continuous mappings 

wi th  a Lipschitz-continums inverse.  Here we always have 

m S Q(X,Y) 2 M , which i s  e s s e n t i a l l y  the s t a t enen t  of t he  mean 

value theorem of calculus .  In higher. dinen.slons Q does not  have 

t o  lie a t  a l l  between m and M, and correspondingly large defor- 

mations can be compatible wi th  small strains.  What l i m i t a t i o n s  

t h e r e  a r e  on the  values Q depends completely on t h e  shape of R. 

If R i s  convex we a r e  a t  l e a s t  sure  that  Q ( X , Y )  2 M ( C f .  Lemma I), 

e s s e n t i a l l y  by v i r t u e  of the  t r i ang le  inequal i ty .  But i t  i s  not  

t rue ,  even f o r  convex R, t h a t  Q ( X , Y )  2 m has t o  be  s a t i s f i e d .  

S t i l l ,  sane pos i t i ve  lower bounds f o r  Q can be  found. 

a r e  depends on how "bulkyf' the  s o l i d  anC: how large t h e  s t r a i n s .  

The ends of a t h i n  rod can be  brought together  by deformations 

involving only small s t r a i n s ,  but a bulky s o l i d  has l f s t i f f n e s s n  

What they 

i n  the sense that  any r e l a t i v e  change i n  dis tance of  two poin ts  

1. 
sense by o ther  authors)  i s  choszn i n  analogy t o  'quasi-conformal", 
which, subject  t o  appropriate  r egu la r i ty  conditions,  would be 
defined by the  requirement tha t  

The term I'quasi-isometric't (used inc iden ta l ly  i n  a d i f f e r e n t  

I_ 

l i m  Q ( X , Y )  
SUP 
X E  R 

Y+X 
l i m  Q ( X , Y )  

has a f i n i t e  value. 
conformal . A quasi- isonetr ic  mapping a l s o  i s  quasi-  
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i s  acconpanied necessar i ly  by s t r a i n s  of roughly the  same order  

of mgn i tude . l  

s t r a i n s .  

po in t  w i l l  be reached where the r e l a t i v e  changes i n  d is tance  can 

become very l a rge  compared t o  the maximum s t r a i n s .  

bodies t h i s  occurs when the  s t r a i n s  a r e  of t he  s i z e  of the  

square of the  thickness length  r a t i o .  ( C f .  theorem X ) .  It i s  

p l aus ib l e  that  the  order  of magnitude of s t r a i n s  a t  which the  

This  a t  l e a s t  i s  t h e  case f o r  s u f f i c i e n t l y  small 

If s t r a i n s  a r e  increased slowly a (no t  sharply defined) 

For convex 

s o l i d  l o s e s  i t s  s t i f f n e s s  i s  the same as t h a t  a t  which buckling 

can occur. 

mations f o r  r e l a t i v e l y  small s t r a i n s  and, hence, r e l a t i v e l y  

s m a l l  s t r a i n  energy, should enhance the  p o s s i b i l i t y  of having 

a v a r i e t y  of equilibrium states. The p rec i se  s t r a i n s  o r  s t r e s s e s  

A t  least  the p o s s i b i l i t y  of obtaining l a r g e  defor- 

needed t o  produce buckling depend, of course, on mater ia l  con- 

s t a n t s  and the  p rec i se  ways loads  a r e  applied; but purely kine- 

mat ic  considerat ions of the  type pursued here might give co r rec t  

o rders  of magnitude. For Euler ' s  E l a s t i c a ,  f o r  example, one 

e a s i l y  convinces oneself by dimensional arguments t ha t  indeed 

the  s t r a i n s  accompanying buckling a r e  of the  order  of t he  square 

of t h e  thickness length r a t i o .  

For the  r e s u l t s  discussed i n  the  present  paper t he  number 

of dimensions, as soon as it exceeds 1, i s  unessent ia l .  For that  

reason everything i s  proved f o r  quasi-isometric mappings i n  

Hilbert-space, and i n  the  beginning more genera l ly  i n  Banach 

1. 
of a s o l i d .  
c losed she l l s ,  is not  considered. 

We a r e  concerned here only wi th  s t i f f n e s s  due t o  sheer  bulk 
The much more subt le  phenomenon of s t i f f n e s s  i n  t h i n  
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space. A few o f  the  theorems (notably theorem IV) had been 

given by the  author i n  e a r l i e r  papers ( C f .  [ 1 , E5 1 ) f o r  

the  case of euclidean space. Modified proofs a;ypear here, not 

making use of coznpactness o r  of l i n e a r  approximations. Though 

the  r e s u l t s  apply t o  mappings o f  regions i n  Hi lber t  spaces the  

a c t u a l  arguments used lean  heavily on plane geometry of c i r c l e s ,  

e l l i p s e s  and convex s e t s  i n  general, as the  reader w i l l  gather  

from the  accompanying f igu res .  

The r e s u l t s  given here can be looked a t  as multi-dimensional 

vers ions of the  mean-value theorem of d i f f e r e n t i a l  calculus .  The 

q u a n t i t i e s  M and m a r e  upper and lower bounds of Q ( X , Y )  f o r  Y 

d i f f e r i n g  only in f in i t e s ima l ly  from X. 

( C f .  theorems 1,II) i s  t o  show that  they a c t u a l l y  a l s o  a r e  upper 

and lower bounds of Q ( X , Y )  f o r  X and Y a f i n i t e  dis tance apar t ,  

provided X and Y a r e  s u f f i c i e n t l y  far  removed from the  boundary 

of t he  domain of the  mapping. It i s  s u f f i c i e n t  t ha t  X and Y 

belong t o  a b a l l  of radius  p which i s  such t h a t  t he  concentric 

b a l l  of radius  p l i e s  i n  R. Th i s  implies t ha t  i n  the  case 

t h a t  t he  domain of the  quasi-isometric mapping i s  the  whole 

space that  Q ( X , Y )  l i e s  between m and M f o r  a l l  X,Y. 

shows that  i n  the  case of an isometric mapping (m=M=l)  the  d i s -  

tance of any two poin ts  X,Y i s  preserved i n  the  mapping, provided 

X and Y belong t o  one and the  same b a l l  contained i n  the  domain R. 

Using a r e s u l t  of Mazur an6 U l a m  one f inds  t ha t  a mapping f of a 

connected s e t  R i n  Banach space t h a t  is  l o c a l l y  a homeomorphism 

and for which 

The f i r s t  s t ep  taken 

M 

It also 



V 

. is affine and distance preserving (Cf. theorem 111). 

We have generally two types of statements about the quotient 

Q(X,Y) when the upper and lower bounds M,m of Q(X,Y) for Y-3X are 

given. The first type of statement gives conditions on X and Y 

which assure that m S Q(X,Y) 2 M. The second kind of statement 

gives bounds f o r  Q(X,Y) valid for all X,Y in R. 

of the first type. It assures us that m S Q(X,Y) 2 M if the 
ellipsoid of revolution of f o c i  X,Y and eccentricity m/M lies in 

the domain R. The main use made of this theorem and of  its 

refinement theorem VI is to obtain upper and lower bounds for 

Q(X,Y) f o r  any X,Y in R, in case R is a ball in Hilbert-space. 

Theorem IV is 

It turns cut ir, particular: my (m,M)-isometric mappirig of a b z l l  

in Hilbert-space is invertible when M/m < Here, as else- 

where in this paper, no best" results are obtained. 

cases estimates derived here give the correct order of magnitude 

of quantities but with constant factors that are unrealistically 

poor. There must be a largest universal constant y such that 

(m,M)-isometric mappings of balls with M/m < y are invertible. 

It is proved here that this largest constant y is not smaller 

than vF. Counterexamples show that it cannot exceed the value 

2. It would-be of interest to find the best constant, even for 

mappings of a disk in the plme, or even f o r  conformal mappings. 

For conformal mappings the question would be to find the largest 

Y with the property that every conformal mapping f of a disk 

It In many 
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f o r  which 

VI 

Min 

i s  i n v e r t i b l e .  

a convex set  R i s  inve r t ib l e ,  i f  only M/m i s  s u f f i c i e n t l y  c lose  

t o  1, ( t h e  required degree of closeness depending on the  shape 

of R; ( C f .  Corollary I X l 0  

More general ly  any (m,M)-isometric mapping of 

O f  spec ia l  i n t e r e s t  a r e  the regions R ( c a l l e d  here 

spheroids") that  can be mapped quasi- isometr ical ly  and b i -  ll 

uniquely onto b a l l s .  (For example, regions i n  euclidean space 

that  can be mapped bi-uniquely on a b a l l  by a mapping t h a t  has 

continuous f irst  der iva t ives  and a Jacobian bounded away from 

zero . )  

general ly  a l l  s e t s  t ha t  a r e  starshaped from a l l  po in t s  of some 

b a l l ,  a r e  spheroids.  ( C f .  Theorem V I I I ) .  

It i s  shown here t h a t  all open convex s e t s ,  and more 

The las t  theorems taken up dea l  w i t h  bounds f o r  Q(X,Y) i n  

t h e  case of an (m,M)-isometric mapping of a convex s e t  R i n  

Hilbert-space.  

on t h e  s t i f f n e s s "  of such s e t s  (which a l s o  could be c a l l e d  

" lack of f l e x i b i l i t y " ) .  

w i t h  respect t o  two chosen points  X,Y of R i s  defined. One takes  

the extreme values M' and m' o f  Q(X,Y) f o r  a l l  poss ib le  ( m , M ) -  

The problem i s  t o  ge t  quan t i t a t ive  information 
I1 

First a measure f o r  t he  s t i f f n e s s  of R 

isometric msppings of R, puts  M/m = (I+&) 2 , M r / m l  = ( 1 + ~ ' ) ~  , 

and defines the s t i f f n e s s  of R w i t h  respect  t o  the  po in t s  X,Y 

f o r  given E by s(&,R,X,Y) = E / & '  . The s t i f f n e s s  of R f o r  maxi- 

mum s t r a i n  E i s  then s ( & , R )  = i n f  s ( & , R , X , Y )  f o r  X,Y ranging 

over R. 
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The s t i f f n e s s  depends on the shape of R. The only shape- 

f a c t o r  that w i l l  be taken i n t o  account i s  the  r a t i o  ct/B of the  

r a d i i  of an inscr ibed and concentric circumscribed sphere, 

which i n  euclidean space i s  a l so  a measure f o r  the  "thickness- 

length r a t i o "  of R. S t i f f n e s s  ranges from the  value 1 down t o  

zero .  It i s  l i k e l y  t o  decrease w i t h  increasing maximum s t r a i n  E. 

For two given po in t s  X,Y cf an open convex s e t  R t he  s t i f f n e s s  

s ( & , R , X , Y )  always has the  value 1 when E i s  s u f f i c i e n t l y  small. 

However, f o r  a bounded open convex s e t  R and m y  p o s i t i v e  E we 

can always f i n d  poin ts  X,Y f o r  which s ( & , R , X , Y )  < 1, that i s  

s(E,R) < 1 f o r  E > 0. 

f o r  a l l  E . )  

has the  value zero as soon as the  maximum s t r a i n  E exceeds the  

universa l  value E- 1; 2 we can construct  

(m,M)-isometric mappings t h a t  are not  univalued i n  R. It i s  l i k e l y  

t h a t  f o r  convex R the  s t i f f n e s s  s(E,R) i s  close t o  1 f o r  a l l  

s u f f i c i e n t l y  s m a l l  E ( f o r  non-convex R t he  s t i f f n e s s  s ( E , R )  i s  

l e s s  than 1, even f o r  arbitrari ly small E ) .  Only a weaker 

r e s u l t  i s  proved here, namely that s (  E,R) has a t  l e a s t  the  value 

1/2 for s u f f i c i e n t l y  small E , more p rec i se ly  f o r  E << B /a 

(Theorem X and Corollary X )  

( I f  R i s  t he  whole space then s(s9R) = 1 

Moreover f o r  bounded open convex R t he  s t i f f n e s s  

t h a t  i s  f o r  M/m 

2 2  
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I. Quasi-isometric mappings i n  Banach space. 

1. Regular mappings. 

We consider a Banach space B with elements X,Y, . . and 

another one, b, with elements x,y, . Let x=f(X) be a mapping 

whose domain i s  an open s e t  3 i n  the  space B and whose range l i e s  

i n  the space b . 
The mapping f w i l l  be  ca l l ed  regular  i f  it i s  l o c a l l y  a 

homeomorphism. More p rec i se ly  we define f t o  be regular  i f  

the  following conditions are s a t i s f i e d :  

l a )  f i s  continuous i n  R .  

I b )  

IC) 

-- 

f is open, i . e .  maps open subsets  of R i n t o  open s e t s .  

f i s  l o c a l l y  one-one, i . e .  f o r  every X €  R the re  i s  a 

neighbourhood of X contained i n  R w i t h  t he  property t h a t  

d i s t i n c t  po in t s  i n  tha t  neighbourhood a r e  mapped by f 

i n t o  d i s t i n c t  po in ts .  1 

A mapping X = G(x) whose domain i s  a s e t  d i n  the  space b 

and whose range l i e s  i n  t h e  s e t  R i s  c a l l e d  an inverse of f ,  i f  

1) G i s  continuous i n  d 

2) f(G(x)) = x for a l l  x i n  d. 

Regular mappings have l o c a l  inverses ,  as i s  proved eas i ly :  

If Xo€E R and xo = f ( X o )  there  e x i s t s  an inverse G(x) of f defined 

i n  a neighbourhood of xo which -- has the property that  G(xo) = Xo. 

Inverses  have cont inuat ion proper t ies  similar t o  ana ly t i c  

- - - - 
- -- 

1. 
same f i n i t e  dimension conditions Ia )  and IC) already imply I b )  
by t he  invariance of domain theorem. 

I n  the  spec ia l  case where both spaces B and b a r e  of the  

- 
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funct ions.  

a point  xo. 

I n  p a r t i c u l a r  we can continue them along rays from 

One v e r i f i e s  eas i ly  the  following proposi t ions:  

Let Xo be a poin t  of R and xo = f (Xo) . We consider a I1  ray" r 

from xo ,  i . e .  a s e t  of po in ts  x b of the  form 

x = xO+hy 

where y i s  a f ixed  non-vaqishing element of b ,  and h runs through 

all non-negative r e a l  numbers. We denote for any p o s i t i v e  number 

IJ. by rIJ. the  subset of r of po in ts  x=xo+hy w i t h  parameter values h 

s a t i s f y i n g  0 S A < p For IJ. = m we s t i l l  def ine r = r .  We 

consider inverses  G of  f defined on s e t s  r 

There e x i s t  such inverses  f o r  p s u f f i c i e n t i y  siiiaii. lvkji-eover 

I-1 
f o r  which G(xo) = Xo. L 

a l l  such inverses  a r e  r e s t r i c t i o n s  t o  r of one and the  same 

global  inverse which we s h a l l  c a l l  

domain a s e t  r 

i n f i n i t e ) .  If Y = l i m  f o(x +hy) e x i s t s  a t  a l l  it must b e  

- I I .  

f - i ( x )  and which has as i t s  
X 

where p i s  t h e  largest poss ib le  IJ. (possibly 
P 

-1 0 

A*? x 
a boundary point  of R. 

neighbourhood i n  b of any compact subset  o f  r , i . e .  for any ~1 

w i t h  0 -C CL < p t he re  e x i s t s  a p o s i t i v e  6 and an inverse G(x) of f 

defined i n  the  s e t  

The mapping f-' can be continued i n t o  a 
yo 

P 

i x :  lx-x 0 -hyl < 6 f o r  some h w i t h  0 i; A S 
J 

such tha t  G ( x )  = f - i ( x )  f o r  x f r 
X CL 

We can then assoc ia te  w i t h  every poin t  X o E  R a unique 

inverse  f - l ( x )  defined i n  a star-shaped region as follows: 
X0 

Let xo = f ( X o ) .  For every y E b w i t h  ly l=1 we consider t h e  ray r 
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of poin ts  x = x o + A y  wi th  A 2 0.  

defined along the ray f o r  0 I h < p 

union of a l l  the  s e t s  r f o r  varying uni t  vectors y forms the  

star s w i t h  the  ver tex xo. This  star i s  an open s e t .  Each 

po in t  x of s l i e s  on a c e r t a i n  r i n  which the re  i s  defined a 

We take the  global  inverse f - l  

(where p depends on y)  . 
X" 

The 

P 

X0 

X0 P 

value of f - l  (x), 

f-l (x) which turns  out  t o  be continuous i n  s 

inverse  of f wi th  domain s 

I n  t h i s  way we have defined uniquely a mapping 
X0 

, and i s  an 
X0 X0 

w i t h  the  property t h a t  f-' (xo)  = Xo. 
xo X0 

Let t he re  be given an a rc  r i n  R, >hat i s  a s e t  of po in t s  - 
X = H ( h )  where H i s  a con+,inuous funct ion defined on an i n t e r v a l  

o 2 >.. s Q . 
- 

.n .  

Let K(O) = x". If ther? the  igz-e-f!! 1 lies com- - 
p l e t e l y  i n  the  star s i . e .  i f  f ( H ( A ) )  E s f o r  0 Z A 2 a ,  

X0 xo - 
then 

f - l  ( f ( X ) )  = x 
X" 

for a l l  x E r. 
We a l s o  observe tha t  because of t he  uniqueness of continu- 

a t i o n  of inverses  along rays any two inverses  of f defined i n  a 

convex s e t  agree i n  a l l  po in ts  of t he  s e t  i f  they agree i n  a 

s i n g l e  poin t .  

2. Def in i t ion  of quasi-isometric mappings. 

A mapping x =  f ( X )  defined i n  the open s e t  R i s  c a l l e d  

quasi-isometric - (more prec ise ly  (m,M)-isometric) i f  i t  i s  regular  

and i f  t he re  e x i s t  pos i t i ve  f i n i t e  numbers m and M such t h a t  f o r  
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all X in R 

IIa) 

IIb) 

The conditions Ia,b,c) a n d  IIa,b) are not completely 

independent. 

of f in R. 

Condition IIa) alone implies already the continuity 

It is clear that any inverse of an (m,M)-isometric mapping 

defined in an open set is again quasi-isometric, and more 

precisely is (M’’,m-’)-isornetric. 

3 .  Examples of quasi-isometric mappings. 

A particular type of quasi-isometric mappings that has 

received attention (see R. Nevanlinna [l]) are those of the form 

f(X) = x - g(x) 

where the domain of g is an open set R in the space B, the range 

of g is also in B, and where it is assumed that there exists a 

constant q < 1 such that f o r  each X in R 

( 3 . 2 )  

The mapping f can then be shown to be (1-q,l+q)-isometric. 

Other quasi-isometric mappings are those f ( X )  that at each 

point in R have a Frechet derivative f ’  ( X )  , which depends con- 
tinuously on X, has an inverse (f’ ( X ) ) - ’  ana is such that for 
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all X R 

5 M , lfI(X))-'l 2 1 ( 3 . )  If'(X)l - 

(here the norms of fl and of its reciprocal are defined as usual 

f o r  linear operators). In the special case where B and b are of 

the same finite dimension n and the mapping function has con- 

tinuous derivatives the matrix f'(X) is just the Jacobian matrix 

of the mapping. 

euclidean distance then necessary and sufficient for the mapping 

f to be (m,M)-isometric is that each eigenvalue A of the 

If here B and b are referred to the ordinary 

symmetric matrix f l  T f' satisfies m 2 S h 2 M 2 . The existence 

necessary for an (m,M)-isometric mapping of euclidean space. 1 

Differentiable quasi-isometric mzppings are always quasi- 

conformal in the sense that they take infinitesimal spheres into 

infinitesimal ellipsoids of bounded eccentricity. Differenti- 

ability is however not at all necessary for a quasi-isometric 

mapping. 

do not differ too much from the identity are quasi-isometric. 

For example continuous piecewise linear mappings that 

Simple examples of quasi-isometric mappings are furnished 

by conformal mappings in the plane .  If F(Z) = F(X+iY) is an 

analytic function of the single complex variable Z = X -t iYthen 
the mapping is (m,M)-isometric if 

1. 
differentiability almost everywhere of Lipschitz continuous 
f unc tions 

This follows from the theorem of Rademacher [ 91 about 
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(where we assume, as always, that 0 < m S M < 0 0 ) .  

4. Rigidity of quasi-isometric mappings. 

A mapping x = f(X) defined in a set in B will be called 

(m,M)-rigid, if for any two points X , Y  of the set the 

inequalities 

(4.1) rnly-xl s If(Y)-f(X)I I b1IY-Xl 

are satisfied. 

If B and b are one-dimensional euclidean spaces the (m,M)- 
isometric mappings f of an open interval are also (m,M)-rigid. 

For differentiable f this is immediate from the mean value 

theorem of differential calculus. 

applying lemma I below to f and to its inverse, which also has 

For otners it foilows by 

an interval as its domain. 

In two dimerxions already the notions of (m,M)-isometry and 

(m,M)-rigidity diverge from each other. 

mapping z = ez is (1,2)-isometric in the strip 
Thus the conformal 

0 < Re(Z) < log 2 

- log 2 - TI we have 1 
z2 - 9 but for Z1 = log 2 f ni, 

Here we shall be interested in finding subsets of the 

domain R of an (m,M)-isometric mapping, in which the mapping is 

also (m,M)-rigid. 

the mean value theorem of differential calculus to higher 

In a sense this is a question of generalizing 
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dimensions. 

the  absolute  value of the  difference quot ient .  

i t  from above ana below by upper and lower bounds f o r  the  

I1 der iva t ive"  a t  poin ts  of t he  region. 

The quant i ty  I f ( Y )  -f ( X )  I / I  Y-X I plays the  r o l e  of 

We t r y  t o  bound 

The main tool here i s  a lemma tha t  e s s e n t i a l l y  shows 

the  upper bounds of difference quot ien ts  and der iva t ives  i n  

convex s e t s  t o  be i d e n t i c a l :  

Lerma I: 

s e t  R i n  a Banach space B and whose range l i e s  i n  a Banach 

space b . 

Let x = f ( X )  be a mapping whose domain i s  a convex - 

1 

Let for each X i n  R - --- 

(4.2) 

Y€R 

Then f o r  any X,Y i n  R - --A 

Proof: Let X,Y be two r o i n t s  of R .  Then the  poin ts  

ZA = ( 1 - A ) X + A Y  

belong t o  R f o r  0 6 A S 1. 

f ( ( 1 - A ) X + A Y )  a funct ion t h a t  maps the  i n t e r v a l  0 2 h 2 1 i n t o  

t h e  space b and s a t i s f i e s  f o r  arguments i n  that  i n t e r v a l  the  

We have i n  @ ( A )  = f ( Z A )  = 

1. 
i s  open. 

We do not assume here that  t he  mapping is regular  o r  that R 

2. A 
c l o s e l y  r e l a t ed  statement i s  proved by A. K. Aziz and J. B. Diaz  

A proof of t h i s  lemma i s  given by R. Nevanlinna [ 8 ] 

[ll. 
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It fo l lows  that  @ ( A )  i s  continuous i n  the  closed i n t e r v a l .  

want t o  prove t h a t  

We 

If that  were not the  case there  would e x i s t  a p o s i t i v e  E such 

that 

(4 .5)  l a ( l ) - p l ( o ) l  ’ ( l + d Y  

We consider the  s e t  of values A wi th  0 < h S 1 f o r  which 

By ( 4 . 5 )  c m t a i n s  the point A = 1. 

s u f f i c i e n t l y  c lose  t o  0 do not belong t o  Hence 

By ( 4 . 3 )  t he  poin ts  h 

p. = i n f  h 
A C T -  

s a t i s f i e s  0 < ~1 2 1. 

po in t  p does not belong t o  1 
By cont inui ty  of the funct ion $(A) the  

that  i s  

But then we have b y  (4.3) for a l l  h s u f f i c i e n t l y  c lose  t o  p. a n d  

g r e a t e r  than IJ- 
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Hence ~1 cannot be the  g r e a t e s t  lower bound of 

i n  which case i s  empty. 

, unless ~1 = 1, 

5. R i g i d i t y  of mappings of balls. 

Theorem I. 

Let x = f ( X )  be (m,M)-isometric i n  the  open s e t  R. Let Xo 

be a poin t  of R and p i t s  d i s t a m e  from the  bounciary of R ( t h a t  

i s  p = inf/Y-Xol f o r  YE R ) .  Let xo = f ( X o ) .  Then the  star s 

contains the  b a l l  Ix-xol < mp. I n  o ther  words: If t h e  b a l l  of 

rad ius  p and cen te r  Xo i s  contained i n  R then f has a univalued 

inverse f 

radius  mp ab0u.i; ftrj. O r  again: If the  regular  mapping f 

magnifies i n f i n i t e s i m a l  bal ls  a t  l e a s t  m-fold i n  a l l  d i r ec t ions  

then it also magnifies b a l l s  i n  R of f i n i t e  radius  a t  l e a s t  

m-fold i n  a l l  d i r ec t ions .  

Proof: 

- - 
X0 - - - 

-1 mapping f ( X o )  i n t o  Xo a t  l e a s t  i n  the ball of 
,,o. 

1 

Let along a ray x = xo + Ay (where lyl = 1, h 2 0) from 

xu the  po in t s  with 0 S h < ~1 be those belonging t o  the  star s . 
X0 

These po in t s  form the  subset r of the  ray. On r we have 
P IJ- 

defined the  inverse f-l of f .  Since f-k (x) i s  (M-',m -1 ) -  
X0 X 

isometr ic  i n  s and r i s  a convex subset of s w e  have 

lemma I ,  p.7 
X0 P X0 

1. For the  spec ia l  mcppings of t he  form (3.1), ( 3 . 2 )  the  theorem 
i s  proved (with a more p rec i se  es t imate)  by Nevanlinna [83 . 
Related theorems a r e  given by E. H. Zarantonello [lo 1, G. Minty 
L73, and F. E ,  Browder 131. 
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for any two poin ts  x,y of rw. 

completeness of the space B that  i n  case ~1 i s  f i n i t e  

It follows then from the  

e x i s t s .  Here 2 can only be a boundary poin t  of R, s ince other- 

wise f-l could be continued along the ray beyond the  point  
X0 

xo f py. Hence IZ-XoI 2 p The inequal i ty  (5.1) y i e lds  f o r  
0 n 

Y = X  a n d x = x  + h y w i t h O < A < ~  

Hence a l s o  by (5.2) 
iz-xy n. 2 m-li-L 

and consequently p 2 m-'w . Thus along each ray from xo the  -. 
inverse  f-' 

t o  be proved. 

can be continued a t  l e a s t  a dis tance mp which was 
X0 

Theorem 11: 

I f  f ( X )  i s  (m,M)-isDmetric i n  the b a l l  [X-Xo/ < p ,  then - 
f ( X )  i s  (m,M)-rigid ( tha t  i s  (3.1)  holds)  i n  the concentric b a l l  

IX-XOl m p 

Proof: 

Since the b a l l  IX-Xol < p i s  convex we obtain immediately 

from Lemma I tha t  

( 5 . 3 )  I f ( Y ) - f ( X ) l  2 MIY-X 

f o r  any X,Y i n  the whole b a l l  o f  rad ius  p I n  order  t o  prove 
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the  remaining inequal i ty  we observe t h a t  by theorem I we have 

i n  f - l  ( X I  

Ix-x I 
we f i n d  tha t  

an (M-',m")-isometric mapping defined i n  the  b a l l  

Applying (5.3) t o  t h a t  mapping 
X0 

0 mp , where xo = f ( X o ) .  

I 
( 5 4- ) 1 f- ' (x)-f- ' (y) 1 2 m -1 I x-yl 

for x,y i n  the  b a l l  of radius mp about xo. 

applied t o  f - l  

s e t  i n  B containing the  b a l l  iX-X"l < M-lmp.  

Moreover by theorem I 

t h i s  function maps the  b a l l  Ix-xol < mp onto a 
X0 

Let then X,Y be 

any po in t s  i n  the  b a l l  IX-Xoi < M- 1 mp . It i s  then poss ib le  t o  

represent X and Y i n  the form X = f-' (x) Y = f-l ( y )  where 
X0 X0 

0 Ix-x I 5 mp , 
then f i i i )  = x, 1 \ 1 1  = y .  

Iy-xOl < mp . BY Lef in i t ion  of inverse  we have 
1 f -- \ Ti; Foiiows Lile11 from (5.4; tiiat 

which completes the  proof .  

Corollary I. 

a homeomorphism between the Banach spaces B and b, and i s ,  

moreov,er, (m,M) - r i g i d  everywhere. 

Proof: 

theorem I1 f o r  p->a t h a t  f i s  (m,M)-rigid everywhere. 

p a r t i c u l a r  if(Y)-f(X)I # 0 for 

i s  one-one. 

large b a l l s  about one of i t s  points ,  and hence i s  the  whole 

space b. 

An (m,M)-isometric mapping of the  whole space i s  

- 

If the  domain R of f i s  the  whole space B we have from 

I n  

IY-Xl # 0, i . e .  t he  mapping f 

By theorem I the  range of f contains a r b i t r a r i l y  
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__.- Corollary 11. If the mapping f(X) has a continuous derivative 

f'(X) in the ball IX-X'l < p , and if for all X in the ball f1 

has an inverse satisfying 1 (fl)-'i 5 m > 0, 

inverse f-'(x) for Ix-f(xo) 1 < mp . 
then f has an 

5*. Isometric mappings. 

We call a mapping x = f(X) isometric, if it is (1,~)- 

isometric, i.e. if f is regular in an open set R and satisfies at 

each point X of R 

( 5 * J  

Similarly we call the mapping f(X) rigid in a set, if it is - 
i 1 , 1; -l>igrG, 01'- &ist&-Lc e ~rese i -v~rzg  , 

( 5 * * 2 )  If(Y)-f(X)I = IY-Xl 

t ha t  is if 

f o r  any X,Y of the set. 

Given any ball IX-Xol < p contained in the domain of an 

isometric mapping f it follows from theorems I, I1 that f maps 

the ball one-one and rigidly onto the ball I x-f (Xo) I < p . 
1 A theorem of Mazur and U l a m  [ 6 ] asserts (in our termi- 

nology) that a rigid homeomorphism f between two Banach spaces B 

and b is affine ("linear" within a translation) , that is we have 

(5'5.3) f((l-A)X+AY) = (1-A)f(X)+Af(Y) 

for any points X,Y in B and any real A . 

1. See also Banach [ 2 ] ,  pp. 166-8. 



Fron t h i s  we e a s i l y  prove: 

Theorem 111. -- 
If  f ( X )  i s  isometric ( i n  the  sense used here)  ir, an open 

coniiected s e t  R then f coincides i n  R w i t h  an a f f i n e  r i g i d  

mapping of the  whole space. 

Proof: The key poin t  i n  the  proof of Mazur and Ulam i s  the  

charac te r iza t ion  2 of the  "midpoint" T = q(X+Y) 1 of two po in t s  X,Y 
i n  Banach space purely i n  terms of dis tances .  One def ines  

recurs ive ly  the s e t s  En by 

One v e r i f i e s  by induct ion that each s e t  1 contains  the  poin t  

T and i s  symmetric wi th  respect t o  T ( tha t  is ,  contains  w i t h  

any Z also Z '  = 2T-Z).  Since then a l s o  IZ-TI 1 2 -n IY-Xl f o r  

a l l  2 E 

as the  poin t  comnon t o  a l l  s e t s  1 

n 

the  midpoint T of X and Y i s  character ized uniquely 
n 

We not ice  tha t  a l l  the 
n 

s e t s  f o r  n=1,2,. . i i e  i n  t he  b a l l  w i t h  diameter XY, that  i s  
n - 

t he  b a l l  IZ-TI 2 $IY-Xl , anc! t h a t  i n  construct ing we could 
n 

r e s t r i c t  ourselves t o  poin ts  o f  that  b a l l ,  and only make use of 

d i s tances  between po in t s  of  t h a t  b a l l .  

Let now T be a poin t  of the domain R of our isometr ic  

mapping f ,  and l e t  R contain a p-neighborhood of T. 

Then f maps the  b a l l  IZ-TI < p one-one r i g i d l y  onto the  b a l l  

Let t = f ( T ) .  

I z - t  1 < p . 
2. Here s l i g h t l y  modified. 

Let X be a point  of 1X-T/ < e and Y t he  symmetric 3 '  
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point with respect to T , that is Y'= 2T -X. Let x=f (x), 
y=f(Y). Then Ix-tl = IX-TI < 5 ,  

Thus the ball with diameter x,y is contained in the b a l l  

( z - t l  < p . Kence the sets constructed successively from 

the points X,Y will have as images exactly the corresponding sets 
1 constructed from x and y. 

I n  

It follows that f(T) = T ( x ~ y ) .  

Let now U and. V be points with IU-TI < , IV-TI < $- Then 

the ball of radius 7IV-Ul 3 about the midpoint of U and V lies in R. 

It follows that 

This relation holds  for any U,V in a $-neighbourhood of T. 

continuity of f then more generally 
By 

One easily convinces oneself that f in a neighbourhood of T 

coincides with an affine mapping g(X) defined in the whole space. 

Indeed the mapping g(Z can be defined f o r  all Z by 

g(W = f(T) 

Here g(2) = f ( Z )  f o r  12-TI 2 6  by (5*.4). The mapping g is rigid 

everywhere, since it is affine and coincides with a rigid mapping 

in a neighbourhood of T. 



We see t h a t  f i n  a neighbourhood of  any point  T of R agrees 

with an a f f ine  r i g i d  mapping g . 
coincide i n  an ogen s e t  coincide everywhere. 

continuation t h a t  f coiccides  w i t h  the  same a f f i n e  mapping g 

i n  a neighbourhood of any point T1 of R t ha t  can be joined t o  T 

ins ide  R by a polygonal arc  with a f i n i t e  number of  ve r t i ce s .  

Since, by assumption, R i s  an open connected s e t  i n  the Banach 

space B i t  i s  possible  t o  jo in  any two poin ts  of R by such a 

polygon. 

a f f i n e  r i g i d  mapping. 

Now two a f f i n e  mappjngs tha t  

It follows by 

It follows t h a t  f coincides througho;lt R w i t h  the  same 

6. Mappings of e l l ipso ids .  

Theoren I1 gives no lower hound f o r  1 f(Y)-f(X) 1 when Y 

and X a r e  poin ts  of the domain of f whose mutual dis tance i s  

l a r g e  compared t o  t h e i r  distance from the boundary of the  domain. 

There w i l l  then be no b a l l  i n  the domain containing both X and Y. 

I n  some cases of i n t e r e s t  one can then s t i l l  make use of the 

following theorem: 1 

Theorem I V .  

Define i n  Banach space B the e l l i p so id  of revolut ion EXY k 

w i t h  f o c i  X,Y - and eccent r ic i ty  k & 

where k < - 1. 

- k 
EXY - (2: 

Let f be (m,M)-isometric i n  R. - -  Then - 

1. 
theorem I V  by elementary geometry, as w i l l  be shown i n  the sequel. 

I n  case B i s  a Hilber t  space theorem 11 can be deduced from 
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f o r  any two poin ts  X,Y - f o r  which the  ell j2soi.d -- Egy w i t h  f o c i  - X,Y 

and ec c ent  r i c  i - t.x 
( 6 . 3 )  m k = -  

p/I 

1 i s  contained i n  R. 

Proof: 

Since the  e l l i p s o i d  E i y  contains the convex h u l l  of i t s  

f o c i  X,Y we conclude immediat,ely from lemma I that 

It remains t o  prove 

(6 .4)  rnly-xl 2 I f ( Y ) - f ( X )  I 

under the  assuaqtjon t h a t  R contains the  e l l i p s o i d  E t y  f o r  

k = m/M. 

assumption that  R contains some e l l i p s o i d  Exy with k < m/M. 

Indeed, i f  R contains  Exy and Xt,Y1 a r e  any p o i n t s  on t h e  open 

segment w i t h  endpoints X , Y  then R contains  some Exlyt kt w i t h  

k' < k. It follows then from the  weaker statement t ha t  

It i s  s u f f i c i e n t  t o  prove ( 6 . 4 )  under the s t ronger  
k 

k 

m 

f o r  any X1,Yt between 

( 6  4) would follow. 

Y ' - X ' I  d I f ( Y ' ) - f ( X t ) i  

X and Y. From t he  cont inui ty  of f equation 

1. Proofs of t h i s  theorem f o r  the  case of euclidean spaces B 
and b were given by the  au thor  i n  [ 4 1, [ 5 3 .  The proof had t o  
be modified for general  Banach spaces f o r  lack  of compactness. 
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(6.5) 

Then 

Assume then that E$ C R where k i s  some value w i t h  

m. k < -  M 

Consider now the  po in t s  

Then Xo = X, X1 = Y. Let for 0 S p S 1 the  a rc  be 
I ,  
P 

defined by 

= (XA’ 0 s h 2 P )  
P 

Put xA = f(X,,). We consider the star sx 

defined i n  t ha t  star. 

star and f-l f o r  the  inverse.  

the  star s then by p .  3 .  

and the  inverse fil 
0 0 

For s impl ic i ty  we j u s t  wr i te  s for the  

If f() ) l i e s  completely i n  
c1 

( 6 . 7 )  

-1 Since f - l  i s  (M’’,m )- isometric 

If‘ 1 (xp)-f-l(Xo) 

t h a t  i s  

m l g - x o l  I If 

i n  s it  fo l lows  then that  

I n  p a r t i c u l a r  i f  f() ) C s we would have for p = 1 1 

which i s  j u s t  the  statement t o  be proved. 
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Hence we only have to consider the  case where f(&) 

t h a t  i s  the  case where there  ex i s t  A w i t h  0 6 A 2 1  f o r  which 

xA 4 s. 

A = V Equation (6.7)  w i l l  hold for 0 2 IJ. < V .  

Since x,, does not  belong t o  s it must not  be possible  t o  continue 

f-’ a l l  the way along the  ray from xo t o  x,, There e x i s t s  then 

a smallest  pos i t i ve  a 2 1 such tha t  the point  z = x,-ia(x,-x ) 

does not belong t o  s .  

s , 

(See Fig.  1.) 

since s i s  open. 

There w i l l  be a smallest  such A,  say 

0 

Moreover by Cauchy’s t e s t  

e x i s t s  and i s  a boundary point of R.  

For P < v and 0 I A 2 1 the poin ts  x o + A ( ~ - x o )  

and consequently 

l i e  i n  s, 

Here f’’(x ) = Xk , f -1 (x,) = Xo . For A < a t he  point  P 
xo-t-h(xv-xo) belongs t o  s and f-’ i s  continuous a t  tha t  point .  

Let t ing ~ 1 .  tend t o  V we f ind  t h a t  f o r  0 < A < a 



. 
18a 



. 
1 9  

Consequently 
I z-x 1 + I 2-Y I 2 1 2-x I + I z-x, I + I x, -Y I s Mm- 1 I x, -x 1 + I x, -Y I 

which contradicts (6.6). 

11. Aappings between Hilbert spaces. 

7. Elliptical hulls. 

In all that follows we shall make the assumption that the 

spaces B and b are Hilbert spaces. The scalar product of two 

elements X,Y of the sane space will be denoted by X-Y, so that 

[ X i 2  = X.X. 

space are euclidean, geometry in such a space agrees perfectly 

with euclidean intuition. 

Em look like their euclidean counterparts in 3-space. 

Definition: 

Since all finite-dimensional subspaces of a Hilbert 

In particular ellipsoids of revolution 
k 

Given a set S in the Hilbert space B and a number k < 1 we 
k define the E -hull of S as the union of all ellipsoids with 

eccentricity k and f o c i  in S .  

For a set consisting of two points X,Y the E k -hull is just 

k the ellipoid Exy 
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k JJema. 11: The E -hul l  of a convex s e t  S of diameter d i s  con- 

ta ined  i n  - the  6d-neighbourhood of s, where 

k Let 2 be a poin t  of the E -hul l  of the convex s e t  S. Proof: 

Then there  e x i s t  po in ts  X,Y i n  S such t h a t  Z € Exy k The 

Gd-neighbourhood of S includes,  because of t he  convexity of S, 

t h e  Gd-neighbourhood of t he  segment wi th  endpoints X,Y. It i s  

s u f f i c i e n t  t o  prove that  2 belongs t o  the  l a t t e r  neighbourhood. 

The two-plane through X,Y,Z i n t e r s e c t s  E& i n  the area bounded 

by t h e  ordinary e l l i p s e  w i t h  f o c i  X,Y ayld eccen t r i c i ty  k. Here 

26d i s  j u s t  t he  minor axis  of t h e  e l l i p s e .  It i s  s u f f i c i e n t  t o  

prove tha t  the  endpoints of the minor ax i s  of an e l l i p s e  a r e  the 

po in t s  on t h e  e l l l p s e  f a r t h e s t  away from the  segment t h a t  has 

t h e  f o c i  as endpoints. (See Fig.  2,) This  i s  e a s i l y  ve r i f i ed .  

Lemma 111: The Ek-hull of the b a l l  iX-Xol < p is the  b a l l  

Proof: 
k We f i rs t  show t h a t  t h e  E -hu l l  of the b a l l  IX-Xol < p i s  

contained i n  the  b a l l  IX-Xol < E 1 p Let X and Y be po in t s  

s a t i s f y i n g  IX-Xol < p , iY-XoI < p . 
2 E Em t he  inequal i ty  

We have t o  prove t h a t  for 
k 

is satisfied.  Let, without r e s t r i c t i o n  of genera l i ty ,  



Figure 2. 
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IY-Xol 2 I X - X o l .  There w i l l  e x i s t  a poin t  Y l  with 

IY1-Xol  = IX-Xol such tha t  Y l i e s  on the  segment with endpoints 
X and Y 1 .  Obviously Exy k E EXyl k It i s  s u f f i c i e n t  t o  prove 

(7.2) f o r  2 E EXyl k 

four  poin ts  X , Y t , X o , Z  we only have t o  prove the  following 

proposit ion: I n  euclidean 3-space l e t  X and Y' be  po in ts  with 

In t e r sec t ing  with the  3-plane through the  

( 7 . 3 )  Ix-xO{ = IY-XOI = h < p 

Let 2 be a poin t  of the  e l l i p s o i d  w i t h  f o c i  X,Y1 and 

e c c e n t r i c i t y  k . Then 

(7.4) 

Inequal i ty  (7.4) w i l l  follow if we can prove 

There i s  now a smallest  sphere about Xo which contains the  

e l l i p s o i d  with f o c i  X,Y1 and eccen t r i c i ty  k. Let 1-1 be the  rad ius  

of that sphere. We want t o  show tha t  IJ- 5 I The sphere of 

radius  1-1 and cen te r  Xo will touch the  boundary of t he  e l l i p s o i d  

a t  a poin t  T. 

coincide,  we see that  the  four  poin ts  X,Y1,T,Xo l i e  i n  the  same 

two dimensional plane. I n  t h i s  plane we have ( s e e  Fig. 3 )  an 

e l l i p s e  with f o c i  X,Yt  and eccen t r i c i ty  k touching a c i r c l e  of 

rad ius  1-1 and cen te r  Xo from the ins ide .  

extended minor a x i s  o f  the  e l l i p s e  and has dis tance A from the  

two f o c i .  

Since the  normals of e l l i p s o i d  and sphere a t  T 

Moreover Xo l i e s  on the  

Elementary geometry shows t h a t  then a c t u a l l y  1-1 = E A .  1 



I 

,/' 

Figure 3.  h = kw. 
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This  proves tha t  the  Ek-hull of t he  b a l l  lX-Xol < p i s  

We contained i n  the  b a l l  IX-Xol < E p . 
every poin t  2 w i t h  1 Z-Xol < p belongs 

IX-Xol < p , IY-Xol p . Take f o r  X,Y 

1 

1 
s t i l l  have t o  show that  
t o  some Exy k w i t h  

simply the  po in t s  

x = xo 4- Cr(z-x0) J Y = xo - Cr(z-x0) 

where cr-k i s  pos i t i ve  and s u f f i c i e n t l y  s m a l l .  

8. Applications t o  quasi-isometric mappings. 

Using the  notion of e l l i p t i c a l  h u l l  we can t r i v i a l l y  

reformulate theorem IV of p .  15 in t h e  following way: 

Theorem IV'. 

Let f ( X )  be an (m,M)-isometric mapping of an open s e t  R 
I 

i n  the  space B. 

f o r  
(8.1) k = R  m 

t h e  Ek-hull of S lies i n  R. 

i n  S. 

Let S be a subset of R with the  property t ha t  - 
- 

Then the  mapping f i s  (m,M)-rigid 

If now B i s  a Hi lber t  space we draw from lemmas I1 and 111, 
p.20, immediately the  following consequences: 1 

Corollary 111: 

Let R be a convex s e t  of diameter d and f(X) an ( m , M ) -  

i sometr ic  mapping of R. Let S be the  convex subset  of R con- 

s i s t i n g  of t he  poin ts  tha t  have a dis tance from the  boundary 

1. That b also i s  a Hilbert-space i s  not used here .  
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of R exceeding the value - 

Then f is (m,M)-rigid in S. 

value 1 the  set S is almost the whole of 3.) 

Corollary IV: 

(Observe that for M/m close to the 

An (m,M)-isometric -- mapping of a ball of radius p 

(m,M)-rigid in the concentric ball of radius 

(This is of course the previously proved theorem 11, p. lo.) 

Quasi-isometric mappings are one-one in the small. The 

question arises under what circumstances one can be sure that 

they are also one-one in the large. It is intuitively obvious 

that such mappings of a domain R will be more likely t o  be 1-1 

if R i s  not too longstretched and M/m is not too large. 

f i rs t  occupy ourselves with the case where R is a ball. 

We will 

An (m,M)-mapping of the whole space is necessarily one-one, 

But if the domain of the mapping is Gnly a ball by Corollary I. 

of finite raclius the mapping need not be one-one if M/m is 

sufficiently large. 

one-one in the disk 121 < ~ ( 1 - k ~ )  where E is any positive number. 

In that d i s k  the mapping is (m,M)-isornetric with m = e 

M = e  

Thus the conformal mapping z=eZ is not 

-TT(l-kE) 
> 

and hence n( 1 C E )  
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Even f o r  smaller values of M/m t he  mapping does not  have t o  be 

one-one i n  a b a l l .  Consider i n  the  plane the  mapping of the  

r i g h t  half-plane tha t  takes  a poin t  w i t h  po la r  coordinates R,@ 

(where R 0, 161 < T / 2 )  i n t o  the  poin t  w i t h  po la r  coordinates 

r,$, where r =  R,QJ = (2+&)6, and where E is any p o s i t i v e  number. 

It i s  c l e a r  that  f o r  t h i s  mapping of the  half-plane m =1, M =  2 + ~ ,  

and hence 
M - = 2+E m (8*4) 

It iij also c l e a r  t h a t  t h i s  mapping of the  half-plane i s  not 1-1. 

So t h e r e  a r e  two po in t s  i n  t h e  half-plane with the  same image. 

We can always f i n d  a c i r c u l a r  d i s k  i n  the  half-plane that  con- 

t a i n s  the  two poin ts .  Me have then a quasi-isometric mapping of 

the  d i s k  with (8 .4 )  that  i s  not 1-1. 

Theorem V. 

An (m,M)-isometric mapping of a b a l l  i n  Hilbert-space B 

is 1-1 i f  

(8.5) m < {F = 1.27.,. 

More prec ise ly ,  when (8.5) is s a t i s f i e d ,  the mapping i s  (p,M)- 

r i g i d  i n  the  b a l l  w i t h  

2 2  . 

Proof: 

rad ius  p i n  Hilbert-space. 

we assume t h a t  t he  cen te r  of' the  b a l l  i s  a t  the  or ig in ,  so t h a t  

Let f be the  (m,M)-isometric mapping of a b a l l  of 

Without r e s t r i c t i o n  of gene ra l i t y  
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the  b a l l  i s  given by 1x1 < p . 
po in t s  of t he  b a l l .  

Let X,Y be any two d i s t i n c t  

Then f o r  0 6 8 I 1  by Lemma I 

5 If(eY)-f(0X)l-2M(l-G)p . 
Let d = elY-Xl be the  distance of t he  po in t s  0 X  and 8Y, and l e t  

k =  m/M. We choose 8 i n  such a way tha t  both the  poin ts  X and Y 

have dis tance a t  l e a s t  

(8.7) 

from the  boundary of the  b a l l .  (See Fig. 4 . )  Since the b a l l  

i s  convex every poin t  on the segment w i t h  endpoints 8X, BY will 
then a t  l e a s t  have tha t  distance from the  boundary of the  b a l l .  

It follows then from Corollary 111, p.22, t h a t  f. i s  (rn,M)-rigid on 

t h e  segment with endpoints 6X and 8Y.  .. In  particular it follows 

t ha t  
If(eY)-f(ex)l I mely-xl , 

and hence that  

The dis tance of the  points 0X and @Y from the  boundary of 

the  b a l l  i s  a t  l e a s t  (1-8)p.  Thus the  po in t s  B X ,  8Y w i l l  have 

a d is tance  from t he  boundary a t  l e a s t  equal t o  the  expression 

(8.71, and (8.8) w i l l  hold, if 



Figure 4, 
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tha t  i s  i f  

( 8 . 9 )  

I Then by (8.8) 

(8.10) 

We can always f ind  a 8 w i t h  0 2 6 2 1 sat isfying both (8.9)  Elnd 

(8.10) i f  

p p  f &k-2-l)1/2 IY-Xl S mp - Mp (k‘2-1)1/2 . 
Since IY-Xl < 2p t h i s  i s  cer ta inly the case when 

(8.11) 
rn-M( k’2-1 ) 1/2 

2 ‘-172 W =  
l+(k- -1) 

Since here k=m/M t h i s  value of i-1 reduces t o  the one given by 

(8.6). 

one-one, when (8.5) holds. 

Here @ i s  posi t ive,  and consequently the mapping i s  

9.  Numerical improvement of the preceding resu l t s .  

Obviously there  ex i s t s  a universal constant y such t h a t  an 

(m,M)-mapping of a b a l l  i n  Hilbert-space i n t o  a Hilbert-space i s  

one-one, when M/m 4 Y , 
Here by (8.4), (8.5) 

bu t  need not be one-one when M/m > y 

1.27< y s 2  . 



We can narrow down the  bounds on 7 ,  and i n c i d e n t a l l y  sharpen 

theorem I1 by proving theorem I V t  wi th  k replaced by a l a r g e r  

value than m/M. In con t ra s t  t o  the  developments i n  sec t ion  8 

we shall here make use of t h e  assumption tha t  no t  only B but 

also b a r e  Hilber t ian.  

Theorem: V I :  

Let f be ai? (m,M)-mapping of an open s e t  R i n  Hilbert-space B 

II i n t o  Hilbert-space b. 

that  f o r  

Let S be a subset of R w i t h  the  property 

--- 
( 9 . 1 )  k =\r" 1-t-M 2 m -2  

k t h e  E -hu l l  of S l i e s  in R. 

i n  S. 

Then the  mapping f i s  (m,M)-rigid 

Proof: The proof i s  a modification of the  proof of theorem I V .  

Again i t  i s  s u f f i c i e n t  t o  prove that 

when X and Y a r e  any two points  f o r  which E & C  R for some 

number k w i t h  

< \I l.+M'm-2 
( 9 . W  . 

Let again XA = (I-h)X+hY and xA = f(5). We now introduce f o r  

O s a = B = l  < - e  < ( 9 . 3 )  

t h e  a r c s  by 
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A s  before we have fi l(x,)  = Xc; and 
a 

(9.4) 

i n  the  case where the  whole arc f( zp) l i e s  i n  the  star s . 
'a 

If  now (9 .2)  were wrong there  must be a,@ s a t i s f y i n g  ( 9 . 3 )  f o r  

which the  a rc  f/T ) i s  not  completely contained i n  s . Let 

p = i n f  (B-a) f o r  the  a,@ with  these p rope r t i e s .  
' L a p  xa 

It i s  e a s i l y  

seen tha t  t he re  e x i s t  a,B w i t h  @ - a = p ,  s a t i s f y i n g  ( 9 . 3 )  and 

such t h a t  s does not  c o n t a i n r  For the re  a r e  c e r t a i n l y  
'a - aB 

sequences of values a,B s a t i s f y i n g  ( 9 . 3 )  and w i t h  f ( \  +3) ck sxa 
for which B - a + p .  For su i t ab le  subsequences the  a,$ have l i m i t s ,  

again denoted by a,$ f o r  which g-a=ll,. For t he  limits we cannot 

have f&,) 4 sxa since t h i s  would then hold a lso for a l l  

neighbouring a,@ because the  stars are open-sets.  

Thus the  incor rec tness  of (9.2) l eads  t o  the  exis tence of' 

po in t s  Xa,X i n  the  closed segment w i t h  endpoints X,Y for 8 
) does not belong t o  s . However 

xa 
which the  a rc  f( 

f (X,) C sx 

f o c i  Xa,X B 

f o r  a 2 7 S ?i < 8 Moreover the  e l l i p s o i d  with 
Y 

and e c c e n t r i c i t y  k given by (9.2a)  a lso l i e s  i n  R. 

We shal l  prove t h a t  t ha t  i s  impossible. Without r e s t r i c t i o n  of 

gene ra l i t y  we can assume that  a = 0, B =1 , that  i s  that  X, and 

X 
k w i t h  E X Y C  R ,  where k s a t i s f i e s  (9 .2a)  and which a r e  such tha t  

a r e  the  o r i g i n a l  po in ts  X,Y. We a r r i v e  then a t  p o i n t s  X,Y B 
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( 9 . 4 )  

Let us denote by ph f o r  0 g h 6 1 the  dis tance of the 

poin t  XA from the  boundary of R. 

includes the  b a l l  bh ( see  Fig. 5) of radius  m pA and cen te r  xh. 

I n  t ha t  b a l l  the  inverse fil(x) i s  sure ly  defined. 

union of a l l  these b a l l s  be 

By theorem I the  star s 
xA 

Let the  
h 

If  x i s  a poin t  common 

x 4Z b where 0 I h < CL 
CL 

f(qCL) c s and thus 5 

t o  two of these  b a l l s ,  say x E bA , 
< 1,  then f’’(x) = f’l(x) . For 

xh xCL 

f - V X w )  = x = fX -1 (5’ . 
IJ. xA CL 

f-l and fil are both defined and agree a t  x they agree then a t  
CL’ xh CL 

any point  t ha t  can be joined t o  x by a segment on which both 

a r e  defined; the poin t  x common t o  bh and b 

po in t .  

def ine an inverse f’l(x) i n  the s e t  r 

CL 
was j u s t  such a 

CL 
Thus the  various functions f‘’(x) for 0 2 h < 1 uniquely 

xh 
where 

-1 -1 f (x,) = fx (x,) = xo 0 

0 

A s  ind ica ted  by (9.6) t h e r e  e x i s t s  an a w i t h  0 < a 2 1 

such tha t  
.. 



Figure 5. 



exists and is a boundary point of R. 

with endpoints xo and z = xoi-u(xl-xo) cannot belong to r ; 

The whole closed segment 

otherwise f-I would be defined along the segment and cons-Litute 

a continuation of f;' along the segment, including the  point 

xo+a(xl-xo); but by assumption such a continuation does not 

exist. Thus there exists a ~1 with 0 < p 2 a such that 

0 

that is such that 

( 9 . 7 )  bo+ W(X1-Xo) -Xhl MP^ 

for 0 f A 1. The same inequality still holds for A = l  since 

both xh and pA depend continuously on A .  

We have, as in (6.11), 

U A 

Consequently 

KIY-xI 1 g IZ-Xli-IZ-YI = Iz-xol+lz-xll ( 9 . 8 )  

No1 l for the first time, we make use of t,.e fac, "&&av the 

space b is a Hilbert-space. The expression 

is positive for A = O  and non-positive for h =l. There exists 



then a A such tha t  0 < A 2 1 and 

theorem of Pythagoras, 

= 0. For t ha t  A ,  by the  

It follows froin (9.71, (9 .8)  that 

Usin6 Lemma 1, p. 7 ,  we have then 

(9.9) LIY-XI 2 m -1(p-T- M h IY-X/ 2 -m 2 pA 2 + \r M2(l-h)21Y-X1 - t2  -m 2 pA 2 ) k 

An elementary computation shows that  f o r  

X h  = (l-A)X+AY 2 0 I h < = 1 

the  b a l l  of radius  

i s  contained i n  the  e l l i p s o i d  Exy k Hence - 

It follows from (9.9)  that  there  e x i s t s  a A i n  t he  i n t e r v a l  

0 2 h I 1 for which 

E 1 B m -1 ((M 2 2  A -m 2 (k'2-1)A(l-A) + f M 2 ( l - A )  2 2  -m (k'2-1)h(1-A) ) 

The right-hand s ide,  which i s  a concave funct ion of h and even 
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1 i n  A -  -- 2 ’  reaches i t s  s ing le  maximm a t  h = -i . It follows t h a t  

Th i s  however cont rad ic t s  (9.2a). 

Using lemma 111, p.22, we j.mmed2ateJ.y o b t a b  from t he  theorem 

j u s t  proved the  following ircprovement on theorem 11, p.10: 

Corollary V I :  

of radius  p i n  Hilbert-space B i n t o  Hilbert-space b. 

- (m,Ml-rigid i n  the  concentric b a l l  of: radius  k p ,  where k is 

given by 

Let f be an (m,M)-isometric mapping of a b a l l  - 
Then f i s  -- 

(9.10) k - i -  

Using (8.11) wi5h the  value of k given by ( 9 . 2 )  we have 

the  following improvement on theorem V, p.24: 

Corol lary VII: 

An (m,M)-isometric mappang of a b a l l  i n  Hilbert-space B 

- i n t o  a Hilbert-space b i s  1-1 i f  

More prec ise ly ,  when (9.11)  i s  s a t i s f i e d ,  the  mapping i s  

(p,M)-rLgid i n  the  whole b a l l  w i t h  

w 3: 

Thus the  bounds for t he  universa l  constant 7 defined on 1326. 
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have been narrowed down to 

As a special case we have: 

Corollary V:TL,T-: 

A conformal mapping of a circular disk given by an analytic 

function F(Z) = F(X+iY) will be schlicht, if there exist con- 

stants m,M such that in the disk everywhere 

and such that 

10. About sets that are quasi-isometrical1 r eqi dent to balls. 

The question when two sets can be mapped into one another 

by a quasi-isometric mapping suggests itself naturally. 

consider in particular open sets R in Hilbert space B f o r  which 

there exists quasi-isometric mappings which map R one-one onto 

a ball in B. 

We 

1 

Each quasi-isometric mapping f with domain R has a greatest 

m and smallest M f o r  which it is (m,M)-isometric in R. 

the quantity 
We call 

(10.1) 

1. 
whole of R, and also to have their range in the same Hilbert 
space B that contains the domain of the mapping. 

Notice that the mappings are required to be one-one f o r  the 



34 

the - eccentricity of the mapping f 

function f by a constant does not change the eccentricity of the 

mapping. 

that for the resulting 

Multiplying the mapping 

We c a n  then always choose the constant in such a way 
ll normalized" mapping the relation mM = 1 

holds. The quantity k then measures the non-isometric character 

of the mapping. Introducing the related quantity 

(1012) 

we have for the mappings normalized by mM = 1 the relations 

1 m = -  If& ' M = l+s , 

and E can be considered as the maximum strain of the mapping. 

Let now R be an open set in Hilbert-space B. Assume that 

there exist one-one quasi-isometric mappings of R onto a ball 

in B. 

lower bound of the eccentricities of all such mappings. The 

We define the eccentrj-city - of the set R as the greatest 

eccentricity of R measures in a sense the least strain sure to 

be generated somewhere in deforming R into a ball. 

that can be inapped one-one and quasi-isometrically into balls 

will be called, for short, spheroids. A spheroid then is a set 

that can be deformed into a sphere (or rather a "ball") 

Open sets R 

without causing infinite strains. Spheroids have an eccentricity 

k for which 0 6 k < 1. 

The definition of eccentricity of a set given here is 

reasonable in view of the following two lemmas: 
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Lemma IV:  

A s e t  of eccen t r i c i ty  0 i s  a ba3.1. 

Lemma V: 

For an e l l i p s o i d  of: revolution EEy the  eccent r ic i ty ,  as - 
defined j u s t  now,coincides w i t h  t he  e c c e n t r i c i t y  k i n  the  

ordinary meaning of the  word. 

Proof of lemma 111. 

Consider a 1-1 quasi-isometric mapping f of e c c e n t r i c i t y  k 

of the  open s e t  R onto a b a l l .  

mapping i n  such a way that  t h e  cen te r  Xo of the  b a l l  coincides 

wi th  i t s  pre-image and such t h a t  mM =1 for the  mapping. 

b a l l  be IX-Xol p 

isometr ic  mapping of the  b a l l  onto R, and w i t h  the  same m,M. 

theorem I, p.9, and le= I, p.7, the set R will contain t h e  b a l l  

IX-Xol < m p and be contained i n  the b a l l  jX-Xol < Mp 

m,M a r e  r e l a t ed  t o  k by (10 .2) .  For a d i f f e r e n t  mapping f t  of 

e c c e n t r i c i t y  kl of R onto a b a l l  we obtain s i m i l a r l y  a f t e r  

normalization tha t  R i s  contained i n  the  b a l l  IX-XAI < M1p* a n d  

conta ins  the  b a l l  IX-XAl m l p t .  It follows that  

IXo-XAl + m ' p l  2 M p ,  

We can always normalize the  

Let the  

The inverse f - l  a l s o  i s  a 1-1 quasi- 

By 

where 

IXo-Xhl + mp < M ' p ' .  Hence 

It follows that  f o r  k+O the  centers  Xo and radi i  p converge, 

and tha t  R i s  a b a l l .  

Proof of lemma V ,  

The po in t s  X,Y a r e  the  f o c i  of the  e l l i p s o i d  Em. k We can 



use these poin ts  t o  introduce "cy l ind r i ca l  coordinates". For 

any point  Z we put 

(10.5) + z1 3- z2 z = -  X+Y 
2 

where Z1 i s  proport ional  t o  Y-X and Z 2  i s  orthogonal t o  Y-X. 

The e l l i p s o i d  Eky t ha t  had been defined by 

(10.6) I z - X I  f IZ-YI < j-IY-X/ 1 

then has the  ''equation'' 

We apply the  l i n e a r  mapping 

1 + z, + -- x-i-Y 
2 2 z2 

f ( Z )  = f(Y+Zl+Z2) = -  
A 1-k 

(10.8) 

which transforms the  e l l i p so id  (10.7) i n t o  the  b a l l  

9 and moreover i s  1-1 and (rn,N)-isometric w i t h  m = l ,  M = 1 

and thus of e c c e n t r i c i t y  k, 

I n  order  t o  prove tha t  there  i s  no mapping w i t h  e c c e n t r i c i t y  

l e s s  than k taking E!& i n t o  a b a l l  we consider such a mapping 

tak ing  E& i n t o  the  b a l l  of radius 1. 

be (m,M)-isometric wi th  c e r t a i n  m,M. 

The inverse mapping w i l l  

By Theorem I, p. 9, and 

Lemma I, p.7, the  e l l i p s o i d  EEy contains  a b a l l  of radius  m and 

i s  contained i n  a b a l l  of radius M; hence i t s  minor a x i s  i s  a t  

l e a s t  2m, i t s  major a x i s  a t  most 2M. Consequently k I 
which was t o  be proved. 
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Figure 6 .  Plane spheroid.  

Figure 7. Plane non-spheroid. 
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Spheroids can be r a the r  complicated looking s e t s .  

i l l u s t r a t e s  the  plane s e t  obtained from the c i r c l e  with the  

equation r = 2 cos 8 i n  po la r  coordinates by the  mapping 

Figure 6 

1 2 log 2 
P l o g  r ( r ,@)  -7(rj 8 -- 

T h i s  spheroid has a pointed end bounded, i n  the  l i m i t ,  by two 

logarithmic s p i r a l s  

An obvious necessary condition f o r  a s e t  R t o  be a spheroid 

i s  that  R i s  bounded s ince there  has t o  e x i s t  a uniformly 

Lips-h i tz  continuous mapping of  a b a l l  onto R. Less obvious i s  

the  f a c t  t h a t  t h e  boundary poin ts  of a spheroid can  be a t  worst 

"conical" i n  the  sense of the  following theorem: 

--I 

Theorem V I I .  

Let R be a spheroid- of e c c e n t r i c i t y  k. Let for any Y i n  R 

the  dis tance of Y from the  boundary of R be denoted by 

Then for every boundary point  X of R 

p ( Y )  

YE R 

This shows t ha t  regions w i t h  a sharp point  (as i n  Figure 7 )  

cannot be spheroids. 

Proof: Let f be an (m,M)-isometric one-one mapping of the  open 

s e t  R onto a b a l l  of radius r and cen te r  z .  I f  X i s  a boundary 

po in t  of R ne can f i n d  poin ts  XnE R f o r  which 

xn = f ( X , ) ,  so t h a t  I x n - z l  < r. 

l i m  Xn = X. 
n+co 

Put 

For any y w i t h  ly-zl < r the  inverse Y = f ' l (y )  i s  defined, 
-1 and l i e s  i n  R. Moreover, since f - l  i s  (M'',rn )- isometric i n  



the ball we have by lemma I, p. 7, that 

since X is a boundary point. Hence by (10.10) 

It follows that  

(10.11) lim lxn-zI = r . 
n-boo 

Introduce now the points 

y, = Z +  (l-lXn-X1 1/2 )(xn-z) 

Clearly lyn-zl < r for a l l  sufficiently large n Put for those n 

Y, = f -1 ( Y J .  

whereas by (10.10) 
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It follows that  

and thus,  by (10.11) 

l i m  
n-03 

Since a l s o  by (10.12) 

I - l i m  Iyn-xnI 
n->m 

- 1- l i m  1xn-x1'/2/x - z l  = o , 
n n-co 

we have 

l i m  Yn = X ,  
n3o3 

and have proved that 

Y E R  

s ince  (2- i s  the  supremum of a l l  m/M we have proved (10.9) 

Theorem VIII. 

Let R be a bounded open s e t  i n  Hilbert-space B. Let R 

contain a b a l l  from each point of which R appears star-shaped; 

( t h a t  i s  every poin t  of R can be joined t o  every po in t  of the  

b a l l  by a l i n e  segment i n  R ) .  Then R i s  a spheroid. In  par- 

t i c u l a r :  every bounded open convex s e t  i s  a spheroid.. 

Proof: 

Assume, without r e s t r i c t i o n  of genera l i ty ,  that R appears 
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star-shaped from a l l  po in ts  of t he  b a l l  1x1 < a .  Since R i s  

bounded the re  w i l l  e x i s t  a concentric b a l l  1x1 < b which con- 

t a i n s  a l l  of R .  

R i s  star-shaped from the  o r i g i n  and bounded. 

describe R completely by the non-negative scalar funct ion @ 

defined by 

We can then 

(10.13b) d(0) = 0 

T h i s  funct ion i s  homogeneous o f  degree 1: 

The po in t s  X of R a r e  prec ise ly  those f o r  which 

The obvious candiciate f o r  a mapping of R onto the  u n i t  b a l l  

i s  the  mapping given by the  expression 

which is  l i n e a r  along each ray from t he  o r ig in .  

we see  immediately tha t  f maps R one-one onto the  b a l l  1x1 .C 1. 

The assumption tha t  R contains the  b a l l  of radius  a about 0 and 

i s  contained i n  tne  b a l l  of  radius b about 0 y i e lds  the  

i n e q u a l i t i e s  

Using (10.11!.) 

(10.16) 
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To xake sure  t h a t  f i s  a regular mapping we need only show tha t  f 

acrld i t s  inverse f-l a r e  continuous. It s u f f i c e s  t o  show tha t  t he  

funct ion $ ( X )  i s  continuous. For then f ( X )  i s  continuous by 

(10.15), (10.16)~ and s imi la r ly  f-l continuous s ince  

(10.17) x = f -1 ( x )  = p t 5 ~  1x1 f o r  x + o I f-’(o) = 0 .  

We shal l  prove that @ i s  even Lipschitz continuous. 

The assumption that  R i s  star-shaped from any poin t  X i n  

the  ball 1x1 < a implies that 

(10.18) @((i -e )x+eY)  < 1 fo r  o 2 e 2 1, 1x1 < a r  $ ( Y )  .c 1 

(See Fig.  8 )  

a r b i t r a r y .  For any 0 wi th  

L e t  now Y be any poin t  w i t h  @(Y) 1 and l e t  Z be 

o < e <  p:m- 
w e  have 

Applying (10.18) w i t h  X = 0Z/(l-e) we f i n d  that 

Replacing Y and Z by hY and hZ we have then that  

For h * l / $ ( Y )  th i s  y i e l d s  the inequal i ty  
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Figure 8. 
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provided Y # 0. 

(10.16) . 
equal i ty  with X and Y interchanged we conclude that the  func t ion  

frl s a t i s f i e s  the  Lipschitz condition 

But t h i s  inequal i ty  also holds f o r  Y = 0 by 

Putt ing Z+ Y = X, and also considering the  same in -  

Since also 

w e  f i n d  for t he  function f given by (lO.l5), using (10.3.6), t ha t  

(10.20) 

Similar ly  w e  have 

Hence by (10.17), (10.16) 
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It follows t ha t  the  mapping f i s  quasi-isometric w i t h  

(10.21) 

and, hence, t ha t  R i s  a 

(10.22) k =  < 

11. S t i f f n e s s  of s e t s .  

M 4ab + 2b2 - 5 -..- 
m -  2 a 

spheroid of e c c e n t r i c i t y  

4 a v L -  4 ( 2 a b + b  2 2  ) . 

Let R be an open s e t  and X , Y  two d i s t i n c t  po in t s  of  R. For 

given m,M w i t h  0 < m S M < CD we consider the  c l a s s  of a l l  (m,M)-  

isometric mappings f of R and define 

(11.1) M1 (m,M, R,X,Y)  = 

(11.2) m 1  (m,M,R,X,Y) = 

It i s  c l e a r  that  m1 and MI are homogeneous of f i rs t  degree i n  

m,M, s ince on replacing f ( X )  by X f ( X )  wi th  a p o s i t i v e  h the  

q u a n t i t i e s  m,M a r e  j u s t  replaced by hm,hM 

isometr ic  mapping f of R furnishes  a lower bound on M and an 

upper bound on m. 

spec t ive ly  f ( X )  = mX we see  i n  p a r t i c u l a r  t h a t  

Any spec ia l  ( m , M ) -  

Using the  l i n e a r  mappings f ( X )  = MX re- 

(11.3) m'(m,M,R,X,Y)  S m , M I  (m,M,R,X,Y) I M 

If  R i s  convex we have by lemma I tha t  M1(m,M,R,X,Y) = M 

genera l ly  the  quant i ty  M1(m,M,R,X,Y) i s  always f i n i t e ,  i f  R i s  

connected. For then there  are polygonal a r c s  connecting X and Y; 

More 



s ince  the  length of each siCe of such an a r c  i s  increased a t  

most M-fold by the  mapping we have 

(11.4) 

where L ( R , X , Y )  i s  the  infinwn of the  lengths  of a l l  polygonal 

arcs connecting the  poin ts  X and Y i n s ide  R. 

p. q,' we also have m *  (m,M,X,Y)  = m i f  R contalnrc, the e l l i p s o i d  

w i t h  k given by (9.1). 

BJ Theorem VI, 

Since m t  and MI a r e  homogeneous i n  m,M the  r a t i o  M'/m' 

depends only on M/m and R,X,Y. We pu t  again 

M 2 - = (1+E) * (11 5 d  m 

We can def ine then a quant i ty  E '  by M1/mf = ( l - t -~ ' )~,  t h a t  i s  

We now define the  s t i f f n e s s  of t he  s e t  R with respect  t o  the  

p o i n t s  X,Y by 
E (11.6) s ( E , R , X , Y )  = &i (&,R,X,Y) 

Here E '  (c,R,X,Y) i s  a measure f o r  the  g r e a t e s t  r e l a t i v e  change 

i n  d is tance  of the  po in t s  X,Y that  can be obtained by quasi- 

isometr ic  deformations of R without causing s t r a i n s  exceeding E 

somewhere i n  R. By (lI.3) we have always 

Since t h e  r e s t r i c t i o n  of an (m,M)-isometric mapping t o  an open 

subset  of R i s  again (m,M)-isometric, we see t h a t  s t i f f n e s s  can 
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only increase with increasing R ;  more precisely we have 

(11.8) s(&,R,X,Y) 2 s(&,R*,X,Y) for R c R* . 
By Theorem VI, p.27, we have s(e,R,X,Y) = 1 if R contains 

the ellipsoid Exy k with foci X,Y and eccentricity 

This implies in particular that a convex open set R will have 

stiffness 1 with respect to two given points X,Y in it for all E 

that are sufficiently small. 

essential. 

The assumption of convexity is 

Take for example the plane referred to polar coordi- 

nates r,8 and slit along the ray 8 = k~ 7r . In the resulting open 

set R characterized by r > 0, -7-r < 8 < T we consider the mapping 

(11. LO) 

where E is a positive number. 

mapping of R we have m= 1, M = (I+&) 2 , and M/m = ( 1 - k ~ ) ~  in 
agreement with (11.5a) 

Clearly f o r  this quasi-isometric 

Consider now a point 

and take for Y the symmetric point 

Then for E sufficiently small 

Hence 
2 sin (l4-c) e 

 SF^ e m t  (m,M,R,X,Y)  5 . 



. 

Since also M ' ( m , M , R , X , Y )  h M ,  we have 

= 1 + 2 ( 1 - e  cot  G ) E  -+ 0 ( c 2 )  

Hence 

and consequently 

(11.12) 

s ince  co t  8 < 0 by assumption on the  poin t  X.  Since s t i f f n e s s  

increases  w i t h  s e t  R the  inequal i ty  (11.12) s t i l l  holds for t he  

same poin ts  X,Y and any open s e t  R t ha t  contains  X,Y and i s  con- 

t a ined  i n  the  s l i t  plane used previously.  (See Fig. 8.) 

We define now a s t i f f n e s s  depending only on the  region R 

and on E by 

If R i s  the  whole space we have s(E,R) = 1 

Corollary I,p.11. But f o r  general  regions t h i s  cannot be expccted. 

To see t h i s  we take again the  mapping (ll.lO), but t h i s  time 

appl ied t o  the  open half-plane l e ]  < n/2 . We take  again two 

symmetric po in ts  X = (r,e) and Y = ( r , -6 ) ,  where now 8 i s  some 

f o r  a l l  E 5 0 by 

value with 0 < 8 < 7r/2 FJe f ind  as before the  inequal i ty  (11.11) 

for ef(&,R,X,Y). Since here 8, depending on the  choice of X, i s  

any number between 0 and n/2 , we have f o r  8-->7r/2 
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and hence 

E 
4 2  7.f (11.14) S ( E , R )  6 

(1+&) sin [ -$ lse)2]-  1 

2 2 = l - - q - & + O ( & }  T 

In particular we find that the stiffness s(E ,R)  is zero for 

E = E -1 ; for strains of this size R has no stiffness, i.e. 

we can find points in R with arbitrarily large relative change 

in distance. 

The estimate (11.14) for the stiffness of the region R 

has been established for the case where R is a 2-dimensional 

open half-plane. The result can be extended immediately to the 

more general case where R is a half-plane in Hilbert-space of 

dimension > 1. Here a half-space R is described by the set of X 

satisfying an inequality of the form (X-Xo) 2 > 0, where 2 is 

a fixed non-vanishing element of length 1 of the space. 

proof we only have to provide a mapping analogous to (1.10). 

this purpose we select a unit-vector T orthogonal to 2. 

two-dimensional plane 

For the 

For 

In the 

(11 15) X = Xo+ hZ+ yT (A,p arbitrary real numbers) 

we introduce polar coordinates r, e by 

U sin 8 = - . h 
r = q', cos 8 = F ,  r 

We then apply the transformation taking r,8 respectively into 

r and (I+&) 8 ,  and which keeps the component of X-Xo orthogonal 

to Z and T fixed. The resulting transformation is (m,M)-isometric 

2 
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in the half-space, with m =  1, M =  ( 1 + ~ ) ~ ,  and all previous con- 

clusions apply. As a matter of fact the estimate (11.14) for 

the stiffness of R holds then for much more general regions R, 

namely for all R which are contained in a half-space and contain 

a ball touching the boundary of the half-space. 

a point Xo , a unit vector 2 and a radius p such that 

(X: IX-Xo-aZI < p ) C R  C (X: (X-X ) Z > 0 ) Introducing polar  

coordinates as before we see t ha t  R will contain pairs of points 

X,Y in the two-dimensional plane (11.15) which are symmetric to 

the axis 8 = 0 and have 161 arbitrarily close to n/2. 

ticular the estimate (11.14) applies to the case where R itself 

is a ball. 

That is, we have 

0 

In par- 

Even a ball then will have no stiffness for strains as large 

as E = 4 2  -1. 

supplied by Corollary V I I ,  p.32, according to which 

A lower bound for the stiffness of a ball is 

with p given by ( 9 . 1 2 ) .  This gives the estimate 

This results for very small E in a very poor estimate for the 

stiffness: 

s(E,R) fi+ O ( E )  

which will be improved later. 



12. S t i f f n e s s  of pins .  

Lemma V I :  

- -c--- 

-- L e t  f be an (m*-M)-isanetric napping of a b a l l  

(12.1)  I x - x ~ ~  e r 

where 

(12.2) m = ( 1 + E I 2  

L e t  X ,X  b e  two, poin ts  i n  the smaller concentric b a l l  -- 1 2 -  

IX-Xol < (l+c)-*r - l y ing  on opposite rad i i ;  tha t  i s  f o r  the  

q u a n t i t i e s  

(12.3) Ai = Ixi-xol J 
i = 1 , 2  

we have 

(12.4) xo = ; o < < (1+E)w2r f o r  i = l , z .  
A X t A X  

A14A2 

Put 

(12.5) xi = f ( X i )  for i = 0,1,2 

- 

and l e t  $ be the angle of t h e  t r i a n g l e  with v e r t i c e s  --- _c. _IC-- 

a t  the  ver tex xo defined t o  have a value w i t h  0 6 @ S R .  Then - 
(12.6) 

(See Fig. 10. The poin ts  X1,Xo,X2 a r e  co l l i nea r .  The 

angle P- measures the deviation from c o l l i n e a r i t y  of t he  image 

po in t s  x1,xo,x2. Formula (12 .6)  shows that  f o r  s u f f i c i e n t l y  

small E the  poin ts  s t ay  approximately co l l i nea r . )  
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Figure 10. 



Proof: 

Put 

(12.7) ai = Ixi-xol for i -1,~. 

From the  proof of Theorem 11, p. 10,  i t  i s  apsarent  tha t  we have 

an inverse mapping f - l ( x )  = f''(x) defined throughout the  b a l l  
xO 

(12.8) Ix-xoI < m r  

and that  

xi = f -1 (xi)  for i = O , 1 , 2 .  (12.9) 

Clearly the  3 po in t s  xo,x1,x2 a r e  d i s t i n c t ,  s ince XoJX1,X2 

a r e  d i s t i n c t .  

t he re  i s  defined a unique ray from xo i n  the  same plane as 

xo,x1,x2 which b i s e c t s  t he  angle 8. 
ray f o r  which 

I f  @ = n nothing is  t o  be proved. If 0 2 @ < r 

Let x be that poin t  of the  

Then x s a t i s f i e s  (12.8) s ince  by Theorem 11, p. 10 

and thus by (12.4) 

Hence f ' l (x)  = X i s  defined and 

I M(1+E)-2r = mr 

s a t i s f i e s  (12.1). 

A t  l e a s t  one of the  supplementary angles XlsX0,X and 

X2,X,,X i s  not  acute .  Let it be the  f i r s t  one. Then 
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-x I 2 + /x-xOl2 I M 2 (IX1-Xo) 2 + (X-Xol 2 ) 
IX1 0 

It follows 

2 4 2 2 < M  
m 

= 7 I xl-xl = (I+&) Ixl-xl 

that 
Ixl-xol 2 + Ix-xol 2 - IX-XJ 2 

2lx -x I lx-xol cos $$ = 
1 0  

Then 

which implies (12.6) 

Theorem IX, 

Let R be a convex open set containing the ball IX-Xol a 

and contained in the concentric ball IX-Xo( < Then for any X 

in R we have the estimate - 
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f o r  the  s t i f f n e s s  of R w i t h  respect t o  

universa l  constant .  
- 

The theorem app l i e s  i n  p a r t i c u l a r  

X o J X  where c i s  a 

t o  11 pins' ' ,  t h a t  i s  regions 

cons is t ing  of the  convex h u l l  of a b a l l  IX-Xol < a 

poin t  Y outs ide the  b a l l  where \Y-Xol = B 

compared t o  the  square of t he  thickness-length r a t i o  a/@ 

s t i f f n e s s  of the  p i n  w i t h  respect t o  the  "center" Xo and "point" 

Y i s  near 1. 

e s s e n t i a l l y  diminished. This can be seen from the  example of the  

pin'' R i n  the complex 2-plane cons i s t ing  of the  convex h u l l  of 

and of a 

For s t r a i n s  E small 

the  

For s t r a i n s  of the order  a2/P2 the  s t i f f n e s s  i s  

11 

the  disk l Z l  < a and of the  point Z = i$ . 
conformal mapping 

We subjec t  it t o  the  

e za - l  log(  l+&) 
= f ( Z )  z =  

C3-l l o g (  If€) 

which i s  (m,M)-isometric i n  the p i n  w i t h  

M = 1 + ~  . 1 m = -  
14-& 

Let Xo be the  o r i g i n  and Y the  po in t  corresponding t o  the  complex 

number i B  Then MI (m,M,R,Xo,Y) = M = l+e because of t he  

convexity of R, and 

B 
2a 

~ 

- log  (I+&) 
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Put 
2 2 a  

& = 4-p - 
P2 

and assume that E << a/b ( 4  1. 

1 2  1 - p & +  0 . .  
mt = < s i n b  1/210g ( 1+& ) ) 

cL&-1'210g( l+&) 

2 2  For E large compared to 01 /@ the stiffness s will be small. 

Proof of Theorem IX. (See Big. 11.) 

Let X be a point of R. Then 

(12.11) Ix-xol < B 

Let f be an (m,M)-isometric mapping of R. 

mapping in such a way that 

We normalize the 

(12.12) 

Put 

(12.131 

Then 

- 6  q < 1  
2 

(12.14) 

since 0 < a 2 f3 .  We introduce the sequence of points 

(12.15) 'k 
k k = q X o +  (1-q )X f o r  k=0,1,2,3,... 



R 

Figure 11. 
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Since R i s  convex and  contains the  poin t  X as well  as the  

b a l l  of radius  a about X, we see from (12.15) tha t  R contains  

t h e  b a l l  of radius  q 01 about Xlr as we l l .  k Moreover 

k-1 k 
Ak-l ( 12 .18~~)  

-2 k = (If&) q 01 

It follows then from lemma V I ,  p .49, that  t he  smallest  non- 

negative eagle between the  vectors Zk and Zk-l does not exceed 

the  value 
q = mE(q1'2+ q 4 2 )  . 

Then t h e  smallest  non-negative angle @k between Zo and Zk does 

not exceed the  value kq, as follows from the  t r i a n g l e  inequa l t iy  

on spheres. 

Now X = l i m  Xk ; hence 
k+ m 

-x ) = Zk 
k=O = l i m  (xk-xo) = E ('k+l k kern k=O - 
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a3 1 2  co 
I- - T $  k2ak 

k = O  “k k=O 

By Theorem 11, p. 10, we haveo using (12.18b) 

Hence 

- - -+a 2 2  E (I+&) M) { X - X 0 J  
(1-q)  I+& 

Here by (12.14)’ (12.13) 

a a L 1-q = 3 l+q - 2 ’  
(1+E)2@+ 01 ( l + E  1 *I3 

Assume also f o r  the moment t h a t  E 2 1 Then 

It follows t ha t  



1 I f(X)-f(Xo) I 
T-T (12 J9)  m l ( x  , l + ~  , R,Xo,X) = inf 

f 

10 2 2 P2 I. (1-2 7T & - ) . 2 -.- - I+& 2 a 

Assume momentarily t h a t  

a & <  - (12.20) 9 2671.8 

then by (12.19) 
_I 

Since also, because of the  convexity of R, 

M' (- I. , 1 + ~  , R,XojX) = M = I+E 1-1-5 

we have 

E !  k j ~ , X o  

1 0  2 2 -2 2 11 2 2 -2 = E ( 1 + 2  P @ a ( E + &  ) )  E ( 1 + 2  7T $ 01 E )  

Thus, f i n a l l y ,  under the  assumption (12.20) 

11 2 2 -2 z 1-2 n p a  E .  
1 

1+2 n i j  a 
z 11 2. 2 - Z s  

The same inequa l i ty  holds t r i v i a l l y  for E * a/2 6 nB Hence 
(12.10) i s  proved with c = 2 11 P 2 
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13. St i f fnes s  of convex regions. 

Theorem X. 

Let R be an open convex s e t  containing the  b a l l  IX-Xol < 

Let f be a 

--- - - 
and contained i n  the  concentric b a l l  IX-Xol < B . - -  
(m,M)-isometric mapping. Then f o r  any po in t s  x13X2 in R 

where, as before, E i s  defil?ea by ( l + e ) *  = M/m 

a universa l  constant 

and where C i s  - 

Proof: O f  course only the  l e f t  hand p a r t  of  (13.1) needs proving. 

It i s  s u f f i c i e n t  t o  prove (13.1) f o r  the  case where 

Introduce the  point  ( s ee  F ig .  1 2 )  

(13-3)  x; = (1-0)Xo f ex1 

where 

(13.4) 

l i e s  between 2 and 1. 

1 @ = I - - -  
P 

The b a l l  3 

x2 -xl 

Y 

. 

l i e s  i n  R, s ince R i s  convex and contains the  b a l l  IX-Xol < a 
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R 

Figure 12. 



and the  poin t  X1. 

such t h a t  the b a l l s  

There a l s o  e x i s t s  a pos i t i ve  6 < IX,-X, 

l i e  i n  R. Let R1 be t h e  convex h u l l  of t he  th ree  b a l l s  (13.5) 

and (13.6) (def ined as the se t  of po in t s  

h Y +hey2+ h,Y- 1 1  2 2  

where Y ,Y ,Y- a r e  respectively i n  the  f i r s t ,  second and t h i r d  

b a l l  

a convex s e t  containing t h e  points  X1,X2* 

1 2 3  
and t h e  hi a r e  non-negative numbers of sum 1.) Then R1 i s  

Mcweover, R1 contains  

the  b a l l  (13.5) and i s  contained i n  the  concentric b a l l  

IX-Xhl  < B '  , where 

= Max(a', I X  -XI1 3- 6, IX2-XbI + 6) l o  P 

Here 

c1 

Hence 

(13 -6 )  

and 

J 

If now (13.1) had been establ ished under the  assumption (13.2) 
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we could apply i t  t o  the mapping f i n  the region R' and the  

poin ts  X1,X2 because of (13.6). It would follow that 

B2 h m ( l - 3 & - 9 C  - E )  
2 a 

which i s  t h e  inequal i ty  t o  be proved, only wi th  C replaced by 

another universal  constant SC. 

Let us  assume then tha t  (13.2) i s  s a t i s f i e d .  Theorem I X  

a l ready permits us  t o  estimate I f ( Y ) - f ( X ) I  i f  a t  l e a s t  one of 

t h e  po in t s  i s  well  i n s ide  the  region R. We shal l  estimate 
I f (X,) -f (X1) 1 by proper  use of a It baseline" with endpoints 

Y1,Y2 some dis tance in s ide  R from which we can survey X1 and X2. 

(See Fig.  13.) 

We define the  quant i ty  c.l by 

(13.7)  9 
cL = 10 

and introduce the  aux i l i a ry  points  
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Figure l3* 
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Here, because of the convexity of R, 

Since R is convex and contains the ball IX-Xol < a and 

the points X1,X2, we have from (13.8) that R also contains the 

b a l l s  

IX-Y,I < (1-F)a and IX-Y2/ < (l-p)a . 
Moreover 

It follows then from ( 1 2 . 1 9 )  that 

where 

(13.12) 

Assume momentarily that 

(13.13) 



Hence 
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I X2-Y1 1 2+1 5 - Y 2  I 2 

Moreover, using (13.2) and (13.7), 

Formula (13.9) y ie lds  then 

i x2-x1 I 
2 2 2 2 - 2 2  - 4 1 - 0  m E B a 1 

M 
2 2 2 - 2 2  - 1 ( M  2 2  -m (1-0 E G a 1OM 

Using assumption (13.13) we have then 

> 11 2 2 2 2 - 2  1 2 = mm ( l - ~ )  (1-2 @ E F a 
I f(X2)-f(X1) I 

I x2-x1 I ) - 10 r n ( l i - E )  

11 2 2 2 - 2  L E 2  - --m(lt&)2 1 
10 2 -m(1-2&)(1-2 G E 8 a ) + - 10 

11 2 2 2 -2 
5 12E - - O " & @ a  ) I m(L - - 5 

2 2 2 - 2  2 m ( l - 3 ~ - 1 ! - 0  E 13 a ) 
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This inequal i ty ,  on the  other  hand, i s  t r i v i a l l y  s a t i s f i e d  when 

I n  t h i s  way we have establ ished (13.1) generally,  taking 
1 for C t h e  constant 

(13.14) c = >&$ = 

Corollary I X .  

Let Re be a convex open s t containing a b a l l  0:' radius  a -- -- - 
and being contained i n  a concentric b a l l  of radius  B.  

e x i s t s  a universal  CoiIStant y such t h a t  any (m,M)-isometric 

mapping of R wi th  

There 
& - 

- 

i s  uni-valent i n  R ( t h a t  i s  cons t i t u t e s  a one-one mapping of R ) .  

Proof: 

The spec ia l  case B/a = 1, corresponding t o  a b a l l  R ,  has been 

s e t t l e d  already i n  Corollary V I I ,  p.32, by showing that  the  

mapping i s  mi -va len t  f o r  

E < 21/4,1 = .18.-. . 
The general  case follows from Theorem X, p. 57, but with a 

considerable poorer constant .  We only have t o  take 

1. 
s impl ic i ty .  
s u f f i c i e n t l y  c lose  t o  1 and C s u f f i c i e n t l y  la rge .  

The coef f ic ien t  3 f o r  the term wi th  E i s  chosen only for 
Any numbey > 2 could b e  a r r ived  a t ,  taking l.L 



For the  C given by (13 .14)  t h i s  r e s u l t s  i n  the  choice of  

1 
y =  

There i s  a l a r g e s t  constant y such tha t  &/a < y implies 

We can see tha t  t h i s  best  constant 

For take i n  the  complex Z-plane 

uni-valence of the mapping. 

cannot exceed the  value 10n. 

f o r  R the  convex h u l l  of t he  c i r c l e  

2 = k i f 3  where a < 13. 

by the  ana ly t i c  funct ion 

l Z l  < c1 and of the  two po in t s  

Take f o r  f the  conformal mapping provided 

e 

which i s  (m,M)-isometric i n  R with m = ( l d - ~ ) - l  , M = l + ~  . 
mapping assigns the same image t o  the  two poin ts  

2 = f n i a / l o g ( l + & )  Thus the mapping i s  not uni-valent i n  R 

when 

The 

This i s  c e r t a i n l y  the  case when eP/a > l o r ,  for then, s ince 

also $/a 1, 

log(1i-E) S Max(10n A, l o  If&) log(l+e)) 
a E 

h l og ( l+ l07 r )  > P . 
Corollary X. 

Let R be an open convex s e t  containing a b a l l  of rad ius  a 

and contained i n  a concentric b a l l  of radius  $ .  

f o r  the  s t i f f n e s s  of R the estimate 

Then we have 

E 1 P Z  s ( E , R )  L - - c - 2 - 2  01 



r 

1 

6 4 

where c i s  a universa l  constant.  

( I n  analogy t o  formula (12.10) one may conjecture t h a t  t h e  
1 constant 2 i n  (13.17) can r e a l l y  be replaced by 1.) 

Proof: 

It i s  s u f f i c i e n t  t o  prove (13.17) f o r  t h e  case where 

(13.18) B2 - - € < A  2 a 

w i t h  any f ixed  p o s i t i v e  A ;  

without the  r e s t r i c t i o n  (13.18) i f  w e  replace c by Max(c,c/h). 

the inequa l i ty  (13.19) follows then 

BY (13 .1 )  

(13 .19)  M' < ( 1-I-& ) (I+€' ) 2  = ; m 7 =  2 -2 2 1-3E-CB a & 

provided the denominator on the right-hand s ide  i s  pos i t i ve .  

This i s  c e r t a i n l y  the  case i f  (13.18) holds with a s u f f i c i e n t l y  

small A f o r  then a l s o  E < h and 

3 €  -I- cB2a-2E2 .c 3AI-CA 2 . 
More p rec i se ly  we f i n d  from (13.19) f o r  A s u f f i c i e n t l y  small 

a n  estimate of the  form 

1+2&' I ( l - I - & ' ) *  s l + k &  + O(@ 2 a -2 & 2 ) 

This  implies immediately the  desired inequal i ty  
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